We study the equidistribution on spheres of the n-step transition probabilities of random walks on graphs. We give sufficient conditions for this property being satisfied and for the weaker property of asymptotical equidistribution. We analyze the asymptotical behaviour of the Green function of the simple random walk on Z^2 and we provide a class of random walks on Cayley graphs of groups, whose transition probabilities are not even asymptotically equidistributed.

Bertacchi, D., Zucca, F. (1999). Equidistribution of random walks on spheres. JOURNAL OF STATISTICAL PHYSICS, 94(1-2), 91-111 [10.1023/a:1004540128621].

Equidistribution of random walks on spheres

Bertacchi, D;
1999

Abstract

We study the equidistribution on spheres of the n-step transition probabilities of random walks on graphs. We give sufficient conditions for this property being satisfied and for the weaker property of asymptotical equidistribution. We analyze the asymptotical behaviour of the Green function of the simple random walk on Z^2 and we provide a class of random walks on Cayley graphs of groups, whose transition probabilities are not even asymptotically equidistributed.
Articolo in rivista - Articolo scientifico
Asymptotical isotropy; Cayley graph; Green function; Isotropy; Markov chain; Nearest neighbour type;
English
gen-1999
94
1-2
91
111
partially_open
Bertacchi, D., Zucca, F. (1999). Equidistribution of random walks on spheres. JOURNAL OF STATISTICAL PHYSICS, 94(1-2), 91-111 [10.1023/a:1004540128621].
File in questo prodotto:
File Dimensione Formato  
Bertacchi-1999-Journal of Statistical Physics-AAM.pdf

Accesso Aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Altro
Dimensione 185.04 kB
Formato Adobe PDF
185.04 kB Adobe PDF Visualizza/Apri
Bertacchi-1999-JSP-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 161.46 kB
Formato Adobe PDF
161.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18171
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
Social impact