We present the morphological evolution obtained during the annealing of Ge strips grown on Si ridges as a prototypical process for 3D device architectures and nanophotonic applications. In particular, the morphological transition occurring from Ge/Si nanostrips to nanoislands is illustrated. The combined effect of performing annealing at different temperatures and varying the lateral size of the Si ridge underlying the Ge strips is addressed by means of a synergistic experimental and theoretical analysis. Indeed, three-dimensional phase-field simulations of surface diffusion, including the contributions of both surface and elastic energy, are exploited to understand the outcomes of annealing experiments. The breakup of Ge/Si strips, due to the activation of surface diffusion at high temperature, is found to be mainly driven by surface-energy reduction, thus pointing to a Rayleigh-like instability. The residual strain is found to play a minor role, only inducing local effects at the borders of the islands and an enhancement of the instability
Salvalaglio, M., Zaumseil, P., Yamamoto, Y., Skibitzki, O., Bergamaschini, R., Schroeder, T., et al. (2018). Morphological evolution of Ge/Si nano-strips driven by Rayleigh-like instability. APPLIED PHYSICS LETTERS, 112(2) [10.1063/1.5007937].
Morphological evolution of Ge/Si nano-strips driven by Rayleigh-like instability
Bergamaschini, R;
2018
Abstract
We present the morphological evolution obtained during the annealing of Ge strips grown on Si ridges as a prototypical process for 3D device architectures and nanophotonic applications. In particular, the morphological transition occurring from Ge/Si nanostrips to nanoislands is illustrated. The combined effect of performing annealing at different temperatures and varying the lateral size of the Si ridge underlying the Ge strips is addressed by means of a synergistic experimental and theoretical analysis. Indeed, three-dimensional phase-field simulations of surface diffusion, including the contributions of both surface and elastic energy, are exploited to understand the outcomes of annealing experiments. The breakup of Ge/Si strips, due to the activation of surface diffusion at high temperature, is found to be mainly driven by surface-energy reduction, thus pointing to a Rayleigh-like instability. The residual strain is found to play a minor role, only inducing local effects at the borders of the islands and an enhancement of the instabilityFile | Dimensione | Formato | |
---|---|---|---|
Salvalaglio-2018-Appl Phys Lett-VoR.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
3.6 MB
Formato
Adobe PDF
|
3.6 MB | Adobe PDF | Visualizza/Apri |
Salvalaglio-2018-Appl Phys Lett-AAM.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.