A structure theorem is proved for finite groups with the property that, for some integer m with m ≥ 2, every proper quotient group can be generated by m elements but the group itself cannot.

Dalla Volta, F., Lucchini, A. (1998). Finite groups that need more generators than any proper quotient. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 64(1), 82-91 [10.1017/s1446788700001312].

Finite groups that need more generators than any proper quotient

Dalla Volta, F;
1998

Abstract

A structure theorem is proved for finite groups with the property that, for some integer m with m ≥ 2, every proper quotient group can be generated by m elements but the group itself cannot.
Articolo in rivista - Articolo scientifico
Finite groups
English
1998
64
1
82
91
none
Dalla Volta, F., Lucchini, A. (1998). Finite groups that need more generators than any proper quotient. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 64(1), 82-91 [10.1017/s1446788700001312].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/17775
Citazioni
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 49
Social impact