Given a group N of Heisenberg type, we consider a one-dimensional solvable extension NA of N, equipped with the natural left-invariant Riemannian metric, which makes NA a harmonic (not necessarily symmetric) manifold. We define a Fourier transform for compactly supported smooth functions on NA, which, when NA is a symmetric space of rank one, reduces to the Helgason Fourier transform. The corresponding inversion formula and Plancherel Theorem are obtained. For radial functions, the Fourier transform reduces to the spherical transform considered by E. Damek and F. Ricci

Astengo, F., Camporesi, R., DI BLASIO, B. (1997). The Helgason Fourier transform on a class of nonsymmetric harmonic spaces. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 55(3), 405-424 [10.1017/S0004972700034079].

The Helgason Fourier transform on a class of nonsymmetric harmonic spaces

DI BLASIO, BIANCA
1997

Abstract

Given a group N of Heisenberg type, we consider a one-dimensional solvable extension NA of N, equipped with the natural left-invariant Riemannian metric, which makes NA a harmonic (not necessarily symmetric) manifold. We define a Fourier transform for compactly supported smooth functions on NA, which, when NA is a symmetric space of rank one, reduces to the Helgason Fourier transform. The corresponding inversion formula and Plancherel Theorem are obtained. For radial functions, the Fourier transform reduces to the spherical transform considered by E. Damek and F. Ricci
Articolo in rivista - Articolo scientifico
Helgason Fourier transform
English
1997
55
3
405
424
none
Astengo, F., Camporesi, R., DI BLASIO, B. (1997). The Helgason Fourier transform on a class of nonsymmetric harmonic spaces. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 55(3), 405-424 [10.1017/S0004972700034079].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/17755
Citazioni
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
Social impact