We present an integrated petrological, geochemical, and geophysical model that offers an explanation for the present-day anomalously high non-volcanic deep (mantle derived) CO2 emission in the Tyrrhenian region. We investigate how decarbonation or melting of carbonate-rich lithologies from a subducted lithosphere may affect the efficiency of carbon release in the lithosphere-asthenosphere system. We propose that melting of sediments and/or continental crust of the subducted Adriatic-Ionian (African) lithosphere at pressure greater than 4 GPa (130 km) may represent an efficient mean for carbon cycling into the upper mantle and into the exosphere in the Western Mediterranean area. Melting of carbonated lithologies, induced by the progressive rise of mantle temperatures behind the eastward retreating Adriatic-Ionian subducting plate, generates low fractions of carbonate-rich (hydrous-silicate) melts. Due to their low density and viscosity, such melts can migrate upward through the mantle, forming a carbonated partially molten CO2-rich mantle recorded by tomographic images in the depth range from 130 to 60 km. Upwelling in the mantle of carbonate-rich melts to depths less than 60-70 km, induces massive outgassing Of CO2. Buoyancy forces, probably favored by fluid overpressures, are able to allow migration Of CO2 from the mantle to the surface, through deep lithospheric faults, and its accumulation beneath the Moho and within the lower crust. The present model may also explain CO2 enrichment of the Etna active volcano. Deep CO2 cycling is tentatively quantified in terms of conservative carbon mantle flux in the investigated area. (C) 2009 Elsevier B.V. All rights reserved.

Frezzotti, M., Peccerillo, A., Panza, G. (2009). Carbonate metasomatism and CO2 lithosphere-asthenosphere degassing beneath the Western Mediterranean: An integrated model arising from petrological and geophysical data. CHEMICAL GEOLOGY, 262(1-2), 108-120 [10.1016/j.chemgeo.2009.02.015].

Carbonate metasomatism and CO2 lithosphere-asthenosphere degassing beneath the Western Mediterranean: An integrated model arising from petrological and geophysical data

Frezzotti, M
;
2009

Abstract

We present an integrated petrological, geochemical, and geophysical model that offers an explanation for the present-day anomalously high non-volcanic deep (mantle derived) CO2 emission in the Tyrrhenian region. We investigate how decarbonation or melting of carbonate-rich lithologies from a subducted lithosphere may affect the efficiency of carbon release in the lithosphere-asthenosphere system. We propose that melting of sediments and/or continental crust of the subducted Adriatic-Ionian (African) lithosphere at pressure greater than 4 GPa (130 km) may represent an efficient mean for carbon cycling into the upper mantle and into the exosphere in the Western Mediterranean area. Melting of carbonated lithologies, induced by the progressive rise of mantle temperatures behind the eastward retreating Adriatic-Ionian subducting plate, generates low fractions of carbonate-rich (hydrous-silicate) melts. Due to their low density and viscosity, such melts can migrate upward through the mantle, forming a carbonated partially molten CO2-rich mantle recorded by tomographic images in the depth range from 130 to 60 km. Upwelling in the mantle of carbonate-rich melts to depths less than 60-70 km, induces massive outgassing Of CO2. Buoyancy forces, probably favored by fluid overpressures, are able to allow migration Of CO2 from the mantle to the surface, through deep lithospheric faults, and its accumulation beneath the Moho and within the lower crust. The present model may also explain CO2 enrichment of the Etna active volcano. Deep CO2 cycling is tentatively quantified in terms of conservative carbon mantle flux in the investigated area. (C) 2009 Elsevier B.V. All rights reserved.
Articolo in rivista - Articolo scientifico
Carbonate melts, Magmatism, Mantle metasomatism, Surface-wave tomography, Western Mediterranean
English
2009
262
1-2
108
120
reserved
Frezzotti, M., Peccerillo, A., Panza, G. (2009). Carbonate metasomatism and CO2 lithosphere-asthenosphere degassing beneath the Western Mediterranean: An integrated model arising from petrological and geophysical data. CHEMICAL GEOLOGY, 262(1-2), 108-120 [10.1016/j.chemgeo.2009.02.015].
File in questo prodotto:
File Dimensione Formato  
Frezzotti et al., 2009 ChemGeol.pdf

Solo gestori archivio

Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/174542
Citazioni
  • Scopus 132
  • ???jsp.display-item.citation.isi??? 128
Social impact