We prove a regularity result for Monge–Ampère equations degenerate along smooth divisor on Kähler manifolds in Donaldson’s spaces of ββ -weighted functions. We apply this result to study the curvature of Kähler metrics with conical singularities and give a geometric sufficient condition on the divisor for its boundedness

Arezzo, C., DELLA VEDOVA, A., La Nave, G. (2018). On the curvature of conic Kähler-Einstein metrics. THE JOURNAL OF GEOMETRIC ANALYSIS, 28(1), 265-283 [10.1007/s12220-017-9819-y].

On the curvature of conic Kähler-Einstein metrics

DELLA VEDOVA, ALBERTO;
2018

Abstract

We prove a regularity result for Monge–Ampère equations degenerate along smooth divisor on Kähler manifolds in Donaldson’s spaces of ββ -weighted functions. We apply this result to study the curvature of Kähler metrics with conical singularities and give a geometric sufficient condition on the divisor for its boundedness
Articolo in rivista - Articolo scientifico
Conical singularities, conical Kähler metrics, singular Kähler-Einstein metrics, Monge–Ampère equations
English
2018
28
1
265
283
reserved
Arezzo, C., DELLA VEDOVA, A., La Nave, G. (2018). On the curvature of conic Kähler-Einstein metrics. THE JOURNAL OF GEOMETRIC ANALYSIS, 28(1), 265-283 [10.1007/s12220-017-9819-y].
File in questo prodotto:
File Dimensione Formato  
Arezzo2018_Article_OnTheCurvatureOfConicKählerEin.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 472.38 kB
Formato Adobe PDF
472.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/155660
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
Social impact