The Cauchy problem for strictly hyperbolic systems of balance laws with dissipation was studied. The uniqueness and continuous dependence for the systems were derived. It was proved that the Cauchy problem admitted a semigroup of solutions depending on time and initial data.
Amadori, D., Guerra, G. (2002). Uniqueness and continuous dependence for systems of balance laws with dissipation. NONLINEAR ANALYSIS, 49(7), 987-1014.
Uniqueness and continuous dependence for systems of balance laws with dissipation
GUERRA, GRAZIANO
2002
Abstract
The Cauchy problem for strictly hyperbolic systems of balance laws with dissipation was studied. The uniqueness and continuous dependence for the systems were derived. It was proved that the Cauchy problem admitted a semigroup of solutions depending on time and initial data.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.