The monolithic integration of photonic functionality into silicon micro-technology is a widely-sought goal with projected applications in data-communication and sensing for the near- and mid-infrared spectral range. The realization of integrated passive and active components with means of standard silicon manufacturing processes is already widely advanced. Yet there is no final solution for an effective, electrically pumped light source. A lot of research effort focuses on germanium (Ge) on silicon (Si) hetero-structures. However, Ge is an indirect gap semiconductor with scarce quantum efficiency as compared to intrinsic direct gap materials. High tensile strain and heavy n-type doping have been proposed to enhance the carrier density in the Ge direct conduction band valley and are accepted as a route to achieve positive optical gain in Ge layers. We propose a top-down fabrication for external stressors made of SiGe nanostructures that is based on the lattice mismatch of SiGe and Ge. By means of micro-Raman spectroscopy we demonstrate that Ge is locally deformed and a uniaxial tensile strain of up to 4 % is reached. However, the photo-luminescence from the strained volume is scarce and the emission spectra are bulk like. To constrain the excited electrons to the highly strained regions, the insertion of a SiGe barrier below a shallow layer of Ge is investigated systematically showing that during thermalization carriers overcome the barrier by diffusion. To enlarge the strained volume and to have vacuum as the barrier, we transfer the SiGe stressors to a thin Ge micro-bridge and compare the obtained strain to the case of an attached bulk-like Ge layer. Absolute strain values are of the order of ~ 0.7 % for both micro-bridge and bulk. However, the relative strain induced by the nanostructures in the micro-bridge is 1.3 % due to the high sharing of elastic energy between nanostructures and bridge. Hence, the suspension doubles the strain value with respect to a bulk like system which could conversely allow a larger strained area in the suspended material at constant strain. Moreover, we investigate the photoluminescence from phosphorous doped Ge selectively grown in SiO2 windows on a Si substrate in dependence of the growth conditions. Investigated growth parameters comprise deposition temperature, in-situ dopant flux and postbake condition. The variation of the dopant flux (phosphine PH3 pressure) during in-situ doping at Ge deposition temperatures Tdep = 350 °C and 400 °C revealed that doping increases the PL intensity up to an optimum doping concentration resulting in maximum PL. To elucidate the recombination dynamics in n-doped germanium we revert to a series of phosphorous doped Ge with different dopant concentrations. PL measurements at different temperatures and excitation powers are then compared with theoretical modeling. A self-consistent multi-valley effective mass numerical model for simulation of PL spectra is employed that considers the impact of dopants on the non-radiative recombination dynamics in which we propose a linear dependence of the defect-related recombination rate as a function of the donor density. We find that the Shockley-Read-Hall (SRH) mechanism dominates the non-radiative recombination channel up to a donor density of ~ 5 ×1019 cm-3. The observed increase and successive decrease of PL intensity as a function of doping could be accounted for by a drop of two orders of magnitude in the excess carrier density that is caused by a reduction of the non-radiative Shockley-Read-Hall lifetime. Our model proposes a lifetime reduction from ~ 30 ns in the intrinsic case to ~ 0.1 ns for doping in the 1019 cm-3 range. The achievement of controlled high strain values and heavy doping in Ge layers as well as a proper understanding of the recombination dynamics are of high interest with the prospect to achieve a Ge-based laser.
L'integrazione monolitica di funzionalità fotoniche nella micro-tecnologia basata su silicio è un obiettivo ampiamente perseguito dalla comunità scientifica, con applicazioni nella comunicazione di dati e nella rilevazione nel vicino e medio infrarosso. L’integrazione di componenti attivi e passivi con processi di fabbricazione standard è già avanzata. Tuttavia, ancora non esiste una soluzione per una sorgente di radiazione efficace attivata elettricamente. Un grande sforzo di ricerca si concentra sulle eterostrutture di germanio (Ge) e silicio (Si). Tuttavia, il Ge è un semiconduttore a gap indiretto con efficienza quantica scarsa rispetto ai materiali a gap diretta. Un’alta deformazione e un pesante drogaggio sono stati proposti come metodi per migliorare la densità di portatori nella valle della banda di conduzione diretta del Ge e sono generalmente accettati come una strategia valida per raggiungere un guadagno ottico positivo negli strati di Ge. In questa tesi proponiamo un approccio top-down per la realizzazione di stressori nanostrutturati di SiGe, basati sulla differenza di passo reticolare tra SiGe e Ge. Per mezzo di spettroscopia micro-Raman dimostriamo che il Ge localmente viene deformato uniassialmente fino al 4%. Per limitare la diffusione degli elettroni eccitati dalle regioni altamente deformate, viene studiato sistematicamente l'inserimento di una barriera di SiGe sotto uno strato superficiale di Ge. I risultati dimostrano che durante la termalizzazione gli elettroni superano la barriera di diffusione. Per aumentare il volume deformato e utilizzare il vuoto come barriera, gli stressori di SiGe sono stati trasferiti su un sottile ponte di Ge. Confrontando lo strain ottenuto per il ponte e il bulk, i valori assoluti di strain sono nell'ordine di 0,7%. Tuttavia, la deformazione relativa indotta da nanostrutture nel micro-ponte è 1,3% a causa della alta condivisione di energia elastica tra nanostrutture e ponte. Quindi, la realizzazione di nanostrutture su ponti raddoppia il valore di deformazione rispetto alle stesse nanostrutture su bulk. Questo potrebbe consentire, a parità di deformazione, di avere una più grande zona deformata. Inoltre, abbiamo studiato la fotoluminescenza da Ge drogato fosforo, selettivamente cresciuto in finestre di SiO2 su un substrato di Si, in funzione delle condizioni di crescita. I parametri di crescita comprendono la temperatura di deposizione, il flusso di drogante e i trattamenti termici. La variazione del flusso di drogante ha mostrato che il drogaggio aumenta l'intensità di PL fino a una concentrazione ottimale. Per spiegare la dinamica della ricombinazione abbiamo utilizzato a una serie di campioni con concentrazioni differenti. Misure di PL a diverse temperature e potenze di eccitazione sono state confrontate con un modello teorico. Per la simulazione degli spettri di PL e’ stato utilizzato un modello numerico autoconsistente a multi-valle e massa efficace, che considera l'impatto dei droganti sulle dinamiche di ricombinazione non-radiativa. In questo modello proponiamo una dipendenza lineare del tasso di ricombinazione relativo a difetti in funzione della densità del donatore. Quindi il meccanismo di Shockley-Read-Hall (SRH) domina il canale di ricombinazione non-radiativa fino a una densità di donori pari a 5 × 10^19 cm-3. L’aumento e la successiva diminuzione dell'intensità di PL in funzione del doping potrebbero essere spiegati da un calo di due ordini di grandezza della densità di portatori in eccesso, causato da una diminuzione del tempo di vita legato alla ricombinazione SRH non radiativa. Il raggiungimento di una deformazione elevata e un alto drogaggio in strati di Ge, nonché una comprensione delle dinamiche di ricombinazione, sono di grande interesse per la prospettiva di realizzare un laser basato su Ge.
(2017). OPTIMIZATION STEPS OF GERMANIUM AS LIGHT EMITTER: STRAIN AND N-TYPE DOPING. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2017).
OPTIMIZATION STEPS OF GERMANIUM AS LIGHT EMITTER: STRAIN AND N-TYPE DOPING
BARGET, MICHAEL REINER
2017
Abstract
The monolithic integration of photonic functionality into silicon micro-technology is a widely-sought goal with projected applications in data-communication and sensing for the near- and mid-infrared spectral range. The realization of integrated passive and active components with means of standard silicon manufacturing processes is already widely advanced. Yet there is no final solution for an effective, electrically pumped light source. A lot of research effort focuses on germanium (Ge) on silicon (Si) hetero-structures. However, Ge is an indirect gap semiconductor with scarce quantum efficiency as compared to intrinsic direct gap materials. High tensile strain and heavy n-type doping have been proposed to enhance the carrier density in the Ge direct conduction band valley and are accepted as a route to achieve positive optical gain in Ge layers. We propose a top-down fabrication for external stressors made of SiGe nanostructures that is based on the lattice mismatch of SiGe and Ge. By means of micro-Raman spectroscopy we demonstrate that Ge is locally deformed and a uniaxial tensile strain of up to 4 % is reached. However, the photo-luminescence from the strained volume is scarce and the emission spectra are bulk like. To constrain the excited electrons to the highly strained regions, the insertion of a SiGe barrier below a shallow layer of Ge is investigated systematically showing that during thermalization carriers overcome the barrier by diffusion. To enlarge the strained volume and to have vacuum as the barrier, we transfer the SiGe stressors to a thin Ge micro-bridge and compare the obtained strain to the case of an attached bulk-like Ge layer. Absolute strain values are of the order of ~ 0.7 % for both micro-bridge and bulk. However, the relative strain induced by the nanostructures in the micro-bridge is 1.3 % due to the high sharing of elastic energy between nanostructures and bridge. Hence, the suspension doubles the strain value with respect to a bulk like system which could conversely allow a larger strained area in the suspended material at constant strain. Moreover, we investigate the photoluminescence from phosphorous doped Ge selectively grown in SiO2 windows on a Si substrate in dependence of the growth conditions. Investigated growth parameters comprise deposition temperature, in-situ dopant flux and postbake condition. The variation of the dopant flux (phosphine PH3 pressure) during in-situ doping at Ge deposition temperatures Tdep = 350 °C and 400 °C revealed that doping increases the PL intensity up to an optimum doping concentration resulting in maximum PL. To elucidate the recombination dynamics in n-doped germanium we revert to a series of phosphorous doped Ge with different dopant concentrations. PL measurements at different temperatures and excitation powers are then compared with theoretical modeling. A self-consistent multi-valley effective mass numerical model for simulation of PL spectra is employed that considers the impact of dopants on the non-radiative recombination dynamics in which we propose a linear dependence of the defect-related recombination rate as a function of the donor density. We find that the Shockley-Read-Hall (SRH) mechanism dominates the non-radiative recombination channel up to a donor density of ~ 5 ×1019 cm-3. The observed increase and successive decrease of PL intensity as a function of doping could be accounted for by a drop of two orders of magnitude in the excess carrier density that is caused by a reduction of the non-radiative Shockley-Read-Hall lifetime. Our model proposes a lifetime reduction from ~ 30 ns in the intrinsic case to ~ 0.1 ns for doping in the 1019 cm-3 range. The achievement of controlled high strain values and heavy doping in Ge layers as well as a proper understanding of the recombination dynamics are of high interest with the prospect to achieve a Ge-based laser.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_787864.pdf
accesso aperto
Descrizione: tesi di dottorato
Tipologia di allegato:
Doctoral thesis
Dimensione
8.59 MB
Formato
Adobe PDF
|
8.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.