Trials with second generation CD19 chimeric antigen receptors (CAR) T-cells report unprecedented responses but are associated with risk of cytokine release syndrome (CRS). Instead, we studied the use of donor Epstein–Barr virus-specific T-cells (EBV CTL) transduced with a first generation CD19CAR, relying on the endogenous T-cell receptor for proliferation. We conducted a multi-center phase I/II study of donor CD19CAR transduced EBV CTL in pediatric acute lymphoblastic leukaemia (ALL). Patients were eligible pre-emptively if they developed molecular relapse (>5 × 10-4) post first stem cell transplant (SCT), or prophylactically post second SCT. An initial cohort showed poor expansion/persistence. We therefore investigated EBV-directed vaccination to enhance expansion/persistence. Eleven patients were treated. No CRS, neurotoxicity or graft versus host disease (GVHD) was observed. At 1 month, 5 patients were in CR (4 continuing, 1 de novo), 1 PR, 3 had stable disease and 3 no response. At a median follow-up of 12 months, 10 of 11 have relapsed, 2 are alive with disease and 1 alive in CR 3 years. Although CD19CAR CTL expansion was poor, persistence was enhanced by vaccination. Median persistence was 0 (range: 0–28) days without vaccination compared to 56 (range: 0–221) days with vaccination (P=0.06). This study demonstrates the feasibility of multi-center studies of CAR T cell therapy and the potential for enhancing persistence with vaccination.Leukemia advance online publication, 10 March 2017; doi:10.1038/leu.2017.39
Rossig, C., Pule, M., Altvater, B., Saiagh, S., Wright, G., Ghorashian, S., et al. (2017). Vaccination to improve the persistence of CD19CAR gene-modified T cells in relapsed pediatric acute lymphoblastic leukemia. LEUKEMIA, 31(5), 1087-1095 [10.1038/leu.2017.39].
Vaccination to improve the persistence of CD19CAR gene-modified T cells in relapsed pediatric acute lymphoblastic leukemia
BIAGI, ETTORE;
2017
Abstract
Trials with second generation CD19 chimeric antigen receptors (CAR) T-cells report unprecedented responses but are associated with risk of cytokine release syndrome (CRS). Instead, we studied the use of donor Epstein–Barr virus-specific T-cells (EBV CTL) transduced with a first generation CD19CAR, relying on the endogenous T-cell receptor for proliferation. We conducted a multi-center phase I/II study of donor CD19CAR transduced EBV CTL in pediatric acute lymphoblastic leukaemia (ALL). Patients were eligible pre-emptively if they developed molecular relapse (>5 × 10-4) post first stem cell transplant (SCT), or prophylactically post second SCT. An initial cohort showed poor expansion/persistence. We therefore investigated EBV-directed vaccination to enhance expansion/persistence. Eleven patients were treated. No CRS, neurotoxicity or graft versus host disease (GVHD) was observed. At 1 month, 5 patients were in CR (4 continuing, 1 de novo), 1 PR, 3 had stable disease and 3 no response. At a median follow-up of 12 months, 10 of 11 have relapsed, 2 are alive with disease and 1 alive in CR 3 years. Although CD19CAR CTL expansion was poor, persistence was enhanced by vaccination. Median persistence was 0 (range: 0–28) days without vaccination compared to 56 (range: 0–221) days with vaccination (P=0.06). This study demonstrates the feasibility of multi-center studies of CAR T cell therapy and the potential for enhancing persistence with vaccination.Leukemia advance online publication, 10 March 2017; doi:10.1038/leu.2017.39I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.