In this paper, we define a space h1(M) of Hardy–Goldberg type on a measured metric space satisfying some mild conditions. We prove that the dual of h1(M) may be identified with bmo(M), a space of functions with “local” bounded mean oscillation, and that if p is in (1, 2), then Lp(M) is a complex interpolation space between h1(M) and L2(M). This extends previous results of Strichartz, Carbonaro, Mauceri and Meda, and Taylor. Applications to singular integral operators on Riemannian manifolds are given

Meda, S., Volpi, S. (2017). Spaces of Goldberg type on certain measured metric spaces. ANNALI DI MATEMATICA PURA ED APPLICATA, 196(3), 947-981 [10.1007/s10231-016-0603-6].

Spaces of Goldberg type on certain measured metric spaces

MEDA, STEFANO
Primo
;
2017

Abstract

In this paper, we define a space h1(M) of Hardy–Goldberg type on a measured metric space satisfying some mild conditions. We prove that the dual of h1(M) may be identified with bmo(M), a space of functions with “local” bounded mean oscillation, and that if p is in (1, 2), then Lp(M) is a complex interpolation space between h1(M) and L2(M). This extends previous results of Strichartz, Carbonaro, Mauceri and Meda, and Taylor. Applications to singular integral operators on Riemannian manifolds are given
Articolo in rivista - Articolo scientifico
Hardy spaces, Goldberg type, measured metric space
English
20-ago-2016
2017
196
3
947
981
reserved
Meda, S., Volpi, S. (2017). Spaces of Goldberg type on certain measured metric spaces. ANNALI DI MATEMATICA PURA ED APPLICATA, 196(3), 947-981 [10.1007/s10231-016-0603-6].
File in questo prodotto:
File Dimensione Formato  
medaVolpiAMPA.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 694.96 kB
Formato Adobe PDF
694.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/152286
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
Social impact