We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron–positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward–backward asymmetries and polarised asymmetries. The mass and width of the Z boson, mZ and ΓZ, and its couplings to fermions, for example the ρ parameter and the effective electroweak mixing angle for leptons, are precisely measured: View the MathML source The number of light neutrino species is determined to be 2.9840±0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward–backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, View the MathML source, and the mass of the W boson, View the MathML source. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of mt and mW, the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than View the MathML source at 95% confidence level.

Schael, S., Barate, R., Bruneliere, R., Buskulic, D., De Bonis, I., Decamp, D., et al. (2006). Precision electroweak measurements on the Z resonance. PHYSICS REPORTS, 427(5-6), 257-454 [10.1016/j.physrep.2005.12.006].

Precision electroweak measurements on the Z resonance

CALVI, MARTA;PAGANONI, MARCO;PULLIA, ANTONINO;RAGAZZI, STEFANO;TABARELLI DE FATIS, TOMMASO;TERRANOVA, FRANCESCO;ACCIARRI, MAURIZIO FILIPPO;Carpinelli, M;
2006

Abstract

We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron–positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward–backward asymmetries and polarised asymmetries. The mass and width of the Z boson, mZ and ΓZ, and its couplings to fermions, for example the ρ parameter and the effective electroweak mixing angle for leptons, are precisely measured: View the MathML source The number of light neutrino species is determined to be 2.9840±0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward–backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, View the MathML source, and the mass of the W boson, View the MathML source. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of mt and mW, the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than View the MathML source at 95% confidence level.
Articolo in rivista - Articolo scientifico
electroweak theory, Z boson, DELPHI, ALEPH, OPAL, L3
English
2006
427
5-6
257
454
none
Schael, S., Barate, R., Bruneliere, R., Buskulic, D., De Bonis, I., Decamp, D., et al. (2006). Precision electroweak measurements on the Z resonance. PHYSICS REPORTS, 427(5-6), 257-454 [10.1016/j.physrep.2005.12.006].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/14699
Citazioni
  • Scopus 1327
  • ???jsp.display-item.citation.isi??? 1514
Social impact