Resistance to imatinib represents an important scientific and clinical issue in chronic myelogenous leukemia. In the present study, the effects of the novel inhibitor SKI-606 on various models of resistance to imatinib were studied. SKI-606 proved to be an active inhibitor of Bcr-Abl in several chronic myelogenous leukemia cell lines and transfectants, with IC<sub>50</sub> values in the low nanomolar range, 1 to 2 logs lower than those obtained with imatinib. Cells expressing activated forms of KIT or platelet-derived growth factor receptor (PDGFR), two additional targets of imatinib, were unaffected by SKI-606, whereas activity was found against PIM2. SKI-606 retained activity in cells where resistance to imatinib was caused by BCR-ABL gene amplification and in three of four Bcr-Abl point mutants tested. In vivo experiments confirmed SKI-606 activity in models where resistance was not caused by mutations as well as in cells carrying the Y253F, E255K, and D276G mutations. Modeling considerations attribute the superior activity of SKI-606 to its ability to bind a conformation of Bcr-Abl different from imatinib. ©2006 American Association for Cancer Research.
Puttini, M., Coluccia, A., Boschelli, F., Cleris, L., Marchesi, E., Donella Deana, A., et al. (2006). In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. CANCER RESEARCH, 66(23), 11314-11322 [10.1158/0008-5472.CAN-06-1199].
In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells
PUTTINI, MIRIAM;REDAELLI, SARA;PIAZZA, ROCCO GIOVANNI;MAGISTRONI, VERA;GAMBACORTI PASSERINI, CARLO
2006
Abstract
Resistance to imatinib represents an important scientific and clinical issue in chronic myelogenous leukemia. In the present study, the effects of the novel inhibitor SKI-606 on various models of resistance to imatinib were studied. SKI-606 proved to be an active inhibitor of Bcr-Abl in several chronic myelogenous leukemia cell lines and transfectants, with IC50 values in the low nanomolar range, 1 to 2 logs lower than those obtained with imatinib. Cells expressing activated forms of KIT or platelet-derived growth factor receptor (PDGFR), two additional targets of imatinib, were unaffected by SKI-606, whereas activity was found against PIM2. SKI-606 retained activity in cells where resistance to imatinib was caused by BCR-ABL gene amplification and in three of four Bcr-Abl point mutants tested. In vivo experiments confirmed SKI-606 activity in models where resistance was not caused by mutations as well as in cells carrying the Y253F, E255K, and D276G mutations. Modeling considerations attribute the superior activity of SKI-606 to its ability to bind a conformation of Bcr-Abl different from imatinib. ©2006 American Association for Cancer Research.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.