In this paper we prove that maximal H-monotone operators T:Hn⇉V1 whose domain is all the Heisenberg group Hn are locally bounded. This implies that they are upper semicontinuous. As a consequence, maximal H-monotonicity of an operator on Hn can be characterized by a suitable version of Minty's type theorem.

Calogero, A., Balogh, Z., Pini, R. (2017). On the local boundedness of maximal H-monotone operators. NONLINEAR ANALYSIS, 148, 88-105 [10.1016/j.na.2016.10.003].

On the local boundedness of maximal H-monotone operators

Calogero, A;Pini, R
2017

Abstract

In this paper we prove that maximal H-monotone operators T:Hn⇉V1 whose domain is all the Heisenberg group Hn are locally bounded. This implies that they are upper semicontinuous. As a consequence, maximal H-monotonicity of an operator on Hn can be characterized by a suitable version of Minty's type theorem.
Articolo in rivista - Articolo scientifico
Heisenberg group; H-monotonicity; Maximal H-monotonicity; Minty theorem
English
2017
148
88
105
reserved
Calogero, A., Balogh, Z., Pini, R. (2017). On the local boundedness of maximal H-monotone operators. NONLINEAR ANALYSIS, 148, 88-105 [10.1016/j.na.2016.10.003].
File in questo prodotto:
File Dimensione Formato  
Balogh_Calogero_Pini 2017.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 693.64 kB
Formato Adobe PDF
693.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/145840
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact