The Probabilistic Graphical Models use graphs in order to represent the joint distribution of q variables. These models are useful for their ability to capture and represent the system of independence relationships among the variables involved, even when complex. This work concerns categorical variables and the possibility to represent symmetric and asymmetric dependences among categorical variables. For this reason we use the Chain Graphical Models proposed by Andersson, Madigan and Perlman (Scand. J. Stat. 28 (2001) 33–85), also known as Chain Graphical Models of type II (GMs II). The GMs II allow for symmetric relationships typical of log-linear models and, at the same time, asymmetric dependences typical of Graphical Models for Directed Acyclic Graphs. In general, GMs II are not smooth, however this work provides a subclass of smooth GMs II by parametrizing the probability function through marginal log-linear models. Furthermore, the proposed models are applied to a data-set from the European Value Study for the year 2008 (EVS (2010))

Nicolussi, F., Colombi, R. (2017). Type II chain graph models for categorical data: A smooth subclass. BERNOULLI, 23(2), 863-883 [10.3150/15-BEJ762].

Type II chain graph models for categorical data: A smooth subclass

NICOLUSSI, FEDERICA
Primo
;
COLOMBI, ROBERTO
Ultimo
2017

Abstract

The Probabilistic Graphical Models use graphs in order to represent the joint distribution of q variables. These models are useful for their ability to capture and represent the system of independence relationships among the variables involved, even when complex. This work concerns categorical variables and the possibility to represent symmetric and asymmetric dependences among categorical variables. For this reason we use the Chain Graphical Models proposed by Andersson, Madigan and Perlman (Scand. J. Stat. 28 (2001) 33–85), also known as Chain Graphical Models of type II (GMs II). The GMs II allow for symmetric relationships typical of log-linear models and, at the same time, asymmetric dependences typical of Graphical Models for Directed Acyclic Graphs. In general, GMs II are not smooth, however this work provides a subclass of smooth GMs II by parametrizing the probability function through marginal log-linear models. Furthermore, the proposed models are applied to a data-set from the European Value Study for the year 2008 (EVS (2010))
Articolo in rivista - Articolo scientifico
categorical variables; Chain Graph Models; conditional indipendence models; marginal models
English
2017
23
2
863
883
none
Nicolussi, F., Colombi, R. (2017). Type II chain graph models for categorical data: A smooth subclass. BERNOULLI, 23(2), 863-883 [10.3150/15-BEJ762].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/145695
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact