Noun compounds, consisting of two nouns (the head and the modifier) that are combined into a single concept, differ in terms of their plausibility: school bus is a more plausible compound than saddle olive. The present study investigates which factors influence the plausibility of attested and novel noun compounds. Distributional Semantic Models (DSMs) are used to obtain formal (vector) representations of word meanings, and compositional methods in DSMs are employed to obtain such representations for noun compounds. From these representations, different plausibility measures are computed. Three of those measures contribute in predicting the plausibility of noun compounds: The relatedness between the meaning of the head noun and the compound (Head Proximity), the relatedness between the meaning of modifier noun and the compound (Modifier Proximity), and the similarity between the head noun and the modifier noun (Constituent Similarity). We find non-linear interactions between Head Proximity and Modifier Proximity, as well as between Modifier Proximity and Constituent Similarity. Furthermore, Constituent Similarity interacts non-linearly with the familiarity with the compound. These results suggest that a compound is perceived as more plausible if it can be categorized as an instance of the category denoted by the head noun, if the contribution of the modifier to the compound meaning is clear but not redundant, and if the constituents are sufficiently similar in cases where this contribution is not clear. Furthermore, compounds are perceived to be more plausible if they are more familiar, but mostly for cases where the relation between the constituents is less clear.

Günther, F., Marelli, M. (2016). Understanding karma police: The perceived plausibility of noun compounds as predicted by distributional models of semantic representation. PLOS ONE, 11(10) [10.1371/journal.pone.0163200].

Understanding karma police: The perceived plausibility of noun compounds as predicted by distributional models of semantic representation

MARELLI, MARCO
Ultimo
2016

Abstract

Noun compounds, consisting of two nouns (the head and the modifier) that are combined into a single concept, differ in terms of their plausibility: school bus is a more plausible compound than saddle olive. The present study investigates which factors influence the plausibility of attested and novel noun compounds. Distributional Semantic Models (DSMs) are used to obtain formal (vector) representations of word meanings, and compositional methods in DSMs are employed to obtain such representations for noun compounds. From these representations, different plausibility measures are computed. Three of those measures contribute in predicting the plausibility of noun compounds: The relatedness between the meaning of the head noun and the compound (Head Proximity), the relatedness between the meaning of modifier noun and the compound (Modifier Proximity), and the similarity between the head noun and the modifier noun (Constituent Similarity). We find non-linear interactions between Head Proximity and Modifier Proximity, as well as between Modifier Proximity and Constituent Similarity. Furthermore, Constituent Similarity interacts non-linearly with the familiarity with the compound. These results suggest that a compound is perceived as more plausible if it can be categorized as an instance of the category denoted by the head noun, if the contribution of the modifier to the compound meaning is clear but not redundant, and if the constituents are sufficiently similar in cases where this contribution is not clear. Furthermore, compounds are perceived to be more plausible if they are more familiar, but mostly for cases where the relation between the constituents is less clear.
Articolo in rivista - Articolo scientifico
compound words, distributional semantic models, acceptability, compositionality
English
2016
11
10
e0163200
none
Günther, F., Marelli, M. (2016). Understanding karma police: The perceived plausibility of noun compounds as predicted by distributional models of semantic representation. PLOS ONE, 11(10) [10.1371/journal.pone.0163200].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/141680
Citazioni
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
Social impact