In budding yeast, overcoming of a critical size to enter S phase and the mitosis/mating switch - two central cell fate events - take place in the G 1 phase of the cell cycle. Here we present a mathematical model of the basic molecular mechanism controlling the G 1 /S transition, whose major regulatory feature is multisite phosphorylation of nuclear Whi5. Cln3-Cdk1, whose nuclear amount is proportional to cell size, and then Cln1,2-Cdk1, randomly phosphorylate both decoy and functional Whi5 sites. Full phosphorylation of functional sites releases Whi5 inhibitory activity, activating G 1 /S transcription. Simulation analysis shows that this mechanism ensures coherent release of Whi5 inhibitory action and accounts for many experimentally observed properties of mitotically growing or conjugating G 1 cells. Cell cycle progression and transcriptional analyses of a Whi5 phosphomimetic mutant verify the model prediction that coherent transcription of the G 1 /S regulon and ensuing G 1 /S transition requires full phosphorylation of Whi5 functional sites.
Palumbo, P., Vanoni, M., Cusimano, V., Busti, S., Marano, F., Manes, C., et al. (2016). Whi5 phosphorylation embedded in the G 1 /S network dynamically controls critical cell size and cell fate. NATURE COMMUNICATIONS, 7 [10.1038/ncomms11372].
Whi5 phosphorylation embedded in the G 1 /S network dynamically controls critical cell size and cell fate
Palumbo, P
Co-primo
;VANONI, MARCO ERCOLECo-primo
;BUSTI, STEFANO;MARANO, FRANCESCA;ALBERGHINA, LILIA
2016
Abstract
In budding yeast, overcoming of a critical size to enter S phase and the mitosis/mating switch - two central cell fate events - take place in the G 1 phase of the cell cycle. Here we present a mathematical model of the basic molecular mechanism controlling the G 1 /S transition, whose major regulatory feature is multisite phosphorylation of nuclear Whi5. Cln3-Cdk1, whose nuclear amount is proportional to cell size, and then Cln1,2-Cdk1, randomly phosphorylate both decoy and functional Whi5 sites. Full phosphorylation of functional sites releases Whi5 inhibitory activity, activating G 1 /S transcription. Simulation analysis shows that this mechanism ensures coherent release of Whi5 inhibitory action and accounts for many experimentally observed properties of mitotically growing or conjugating G 1 cells. Cell cycle progression and transcriptional analyses of a Whi5 phosphomimetic mutant verify the model prediction that coherent transcription of the G 1 /S regulon and ensuing G 1 /S transition requires full phosphorylation of Whi5 functional sites.File | Dimensione | Formato | |
---|---|---|---|
NatCommWhi5.pdf
accesso aperto
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Dimensione
911.23 kB
Formato
Adobe PDF
|
911.23 kB | Adobe PDF | Visualizza/Apri |
2016 Nat Comm - G1_S transition with Suppl Material.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
7.27 MB
Formato
Adobe PDF
|
7.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.