Several properties of stationary subdivision schemes are nowadays well understood. In particular, it is known that the polynomial generation and reproduction capability of a stationary subdivision scheme is strongly connected with sum rules, its convergence, smoothness and approximation order. The aim of this paper is to show that, in the non-stationary case, exponential polynomials and approximate sum rules play an analogous role of polynomials and sum rules in the stationary case. Indeed, in the non-stationary univariate case we are able to show the following important facts: (i) reproduction of N exponential polynomials implies approximate sum rules of order N; (ii) generation of N exponential polynomials implies approximate sum rules of order N, under the additional assumption of asymptotical similarity and reproduction of one exponential polynomial; (iii) reproduction of an N-dimensional space of exponential polynomials and asymptotical similarity imply approximation order N; (iv) the sequence of basic limit functions of a non-stationary scheme reproducing one exponential polynomial converges uniformly to the basic limit function of the asymptotically similar stationary scheme.
Conti, C., Romani, L., Yoon, J. (2016). Approximation order and approximate sum rules in subdivision. JOURNAL OF APPROXIMATION THEORY, 207, 380-401 [10.1016/j.jat.2016.02.014].
Approximation order and approximate sum rules in subdivision
ROMANI, LUCIASecondo
;
2016
Abstract
Several properties of stationary subdivision schemes are nowadays well understood. In particular, it is known that the polynomial generation and reproduction capability of a stationary subdivision scheme is strongly connected with sum rules, its convergence, smoothness and approximation order. The aim of this paper is to show that, in the non-stationary case, exponential polynomials and approximate sum rules play an analogous role of polynomials and sum rules in the stationary case. Indeed, in the non-stationary univariate case we are able to show the following important facts: (i) reproduction of N exponential polynomials implies approximate sum rules of order N; (ii) generation of N exponential polynomials implies approximate sum rules of order N, under the additional assumption of asymptotical similarity and reproduction of one exponential polynomial; (iii) reproduction of an N-dimensional space of exponential polynomials and asymptotical similarity imply approximation order N; (iv) the sequence of basic limit functions of a non-stationary scheme reproducing one exponential polynomial converges uniformly to the basic limit function of the asymptotically similar stationary scheme.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.