Molecular recognition of glycans plays an important role in glycomic and glycobiology studies. For example, pathogens have a number of different types of lectin for targeting host sugars. In bacteria, lectins exist sometimes as domains of bacterial toxins and exploit adhesion to glycoconjugates as a means of entering host cells. Herein, we describe the synthesis of three glycodendrons with the aim to dissect the fine structural details involved in the multivalent carbohydrate-protein interactions. LecA, from the pathogen Pseudomonas aeruginosa, has been used to characterize galactose dendrons interaction using one of the most widespread NMR technique for the elucidation of receptor-ligand binding in solution, the saturation transfer difference (STD) NMR. Furthermore, the effective hydrodynamic radius of each dendrimer recognized by LecA was estimated from the diffusion coefficients determined by pulsed-field-gradient stimulated echo (PFG-STE) NMR experiments.
Bini, D., Marchetti, R., Russo, L., Molinaro, A., Silipo, A., Cipolla, L. (2016). Multivalent ligand mimetics of LecA from P. aeruginosa: Synthesis and NMR studies. CARBOHYDRATE RESEARCH, 429, 23-28 [10.1016/j.carres.2016.04.023].
Multivalent ligand mimetics of LecA from P. aeruginosa: Synthesis and NMR studies
BINI, DAVIDEPrimo
;RUSSO, LAURA;CIPOLLA, LAURA FRANCESCA
2016
Abstract
Molecular recognition of glycans plays an important role in glycomic and glycobiology studies. For example, pathogens have a number of different types of lectin for targeting host sugars. In bacteria, lectins exist sometimes as domains of bacterial toxins and exploit adhesion to glycoconjugates as a means of entering host cells. Herein, we describe the synthesis of three glycodendrons with the aim to dissect the fine structural details involved in the multivalent carbohydrate-protein interactions. LecA, from the pathogen Pseudomonas aeruginosa, has been used to characterize galactose dendrons interaction using one of the most widespread NMR technique for the elucidation of receptor-ligand binding in solution, the saturation transfer difference (STD) NMR. Furthermore, the effective hydrodynamic radius of each dendrimer recognized by LecA was estimated from the diffusion coefficients determined by pulsed-field-gradient stimulated echo (PFG-STE) NMR experiments.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.