Aggregation of amyloid-β peptide (Aβ) is a key event in the pathogenesis of Alzheimer's disease (AD). We investigated the effects of nanoliposomes decorated with the retro-inverso peptide RI-OR2-TAT (Ac-rGffvlkGrrrrqrrkkrGy-NH2) on the aggregation and toxicity of Aβ. Remarkably low concentrations of these peptide inhibitor nanoparticles (PINPs) were required to inhibit the formation of Aβ oligomers and fibrils in vitro, with 50% inhibition occurring at a molar ratio of ~1:2000 of liposome-bound RI-OR2-TAT to Aβ. PINPs also bound to Aβ with high affinity (Kd=13.2-50 nM), rescued SHSY-5Y cells from the toxic effect of pre-aggregated Aβ, crossed an in vitro blood-brain barrier model (hCMEC/D3 cell monolayer), entered the brains of C57/BL6 mice, and protected against memory loss in APPSWE transgenic mice in a novel object recognition test. As the most potent aggregation inhibitor that we have tested so far, we propose to develop PINPs as a potential disease-modifying treatment for AD
Gregori, M., Taylor, M., Salvati, E., Re, F., Mancini, S., Balducci, C., et al. (2017). Retro-inverso peptide inhibitor nanoparticles as potent inhibitors of aggregation of the Alzheimer's Aβ peptide. NANOMEDICINE, 13(2), 723-732 [10.1016/j.nano.2016.10.006].
Retro-inverso peptide inhibitor nanoparticles as potent inhibitors of aggregation of the Alzheimer's Aβ peptide
GREGORI, MARIAPrimo
;SALVATI, ELISA;RE, FRANCESCA;MANCINI, SIMONA;ZAMBELLI, VANESSA;SESANA, MARIA SILVIA;MASSERINI, MASSIMO ERNESTOPenultimo
;
2017
Abstract
Aggregation of amyloid-β peptide (Aβ) is a key event in the pathogenesis of Alzheimer's disease (AD). We investigated the effects of nanoliposomes decorated with the retro-inverso peptide RI-OR2-TAT (Ac-rGffvlkGrrrrqrrkkrGy-NH2) on the aggregation and toxicity of Aβ. Remarkably low concentrations of these peptide inhibitor nanoparticles (PINPs) were required to inhibit the formation of Aβ oligomers and fibrils in vitro, with 50% inhibition occurring at a molar ratio of ~1:2000 of liposome-bound RI-OR2-TAT to Aβ. PINPs also bound to Aβ with high affinity (Kd=13.2-50 nM), rescued SHSY-5Y cells from the toxic effect of pre-aggregated Aβ, crossed an in vitro blood-brain barrier model (hCMEC/D3 cell monolayer), entered the brains of C57/BL6 mice, and protected against memory loss in APPSWE transgenic mice in a novel object recognition test. As the most potent aggregation inhibitor that we have tested so far, we propose to develop PINPs as a potential disease-modifying treatment for ADFile | Dimensione | Formato | |
---|---|---|---|
Nanomed_UK.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.