We reconsider the rational Calogero–Moser system from the point of view of bi-Hamiltonian geometry. By using geometrical tools of the latter, we explicitly construct set(s) of spectral canonical coordinates, that is, complete sets of Darboux coordinates defined by the eigenvalues and the eigenvectors of the Lax matrix.
Falqui, G., Mencattini, I. (2017). Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. JOURNAL OF GEOMETRY AND PHYSICS, 118, 126-137 [10.1016/j.geomphys.2016.04.023].
Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system
Falqui, G;
2017
Abstract
We reconsider the rational Calogero–Moser system from the point of view of bi-Hamiltonian geometry. By using geometrical tools of the latter, we explicitly construct set(s) of spectral canonical coordinates, that is, complete sets of Darboux coordinates defined by the eigenvalues and the eigenvectors of the Lax matrix.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
GF-IM-2017.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
464.45 kB
Formato
Adobe PDF
|
464.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.