The subdegrees of a transitive permutation group are the orbit lengths of a point stabilizer. For a finite primitive permutation group which is not cyclic of prime order, the largest subdegree shares a non-trivial common factor with each non-trivial subdegree. On the other hand, it is possible for non-trivial subdegrees of primitive groups to be coprime, a famous example being the rank 5 action of the small Janko group J1 on 266 points which has subdegrees of lengths 11 and 12. We prove that, for every finite primitive group, the maximal size of a set of pairwise coprime non-trivial subdegrees is at most 2.

Dolfi, S., Guralnick, R., Praeger, C., Spiga, P. (2016). On the maximal number of coprime subdegrees in finite primitive permutation groups. ISRAEL JOURNAL OF MATHEMATICS, 216(1), 107-147 [10.1007/s11856-016-1405-7].

On the maximal number of coprime subdegrees in finite primitive permutation groups

SPIGA, PABLO
2016

Abstract

The subdegrees of a transitive permutation group are the orbit lengths of a point stabilizer. For a finite primitive permutation group which is not cyclic of prime order, the largest subdegree shares a non-trivial common factor with each non-trivial subdegree. On the other hand, it is possible for non-trivial subdegrees of primitive groups to be coprime, a famous example being the rank 5 action of the small Janko group J1 on 266 points which has subdegrees of lengths 11 and 12. We prove that, for every finite primitive group, the maximal size of a set of pairwise coprime non-trivial subdegrees is at most 2.
Articolo in rivista - Articolo scientifico
coprime subdegrees, primitive groups, non-abelian simple groups
English
2016
216
1
107
147
reserved
Dolfi, S., Guralnick, R., Praeger, C., Spiga, P. (2016). On the maximal number of coprime subdegrees in finite primitive permutation groups. ISRAEL JOURNAL OF MATHEMATICS, 216(1), 107-147 [10.1007/s11856-016-1405-7].
File in questo prodotto:
File Dimensione Formato  
Coprime2.pdf

Solo gestori archivio

Dimensione 441.53 kB
Formato Adobe PDF
441.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/133465
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
Social impact