We prove that if G is a finite primitive permutation group and if g is an element of G, then either g has a cycle of length equal to its order, or for some r, m and k, the group G ≤ Sym(m)wrSym(r) preserves the product structure of r direct copies of the natural action of Sym(m) on k-sets. This gives an answer to a question of Siemons and Zalesski and a solution to a conjecture of Giudici, Praeger and the second author.

Guest, S., Spiga, P. (2017). Finite primitive groups and regular orbits of group elements. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 369(2), 997-1024 [10.1090/tran6678].

Finite primitive groups and regular orbits of group elements

SPIGA, PABLO
2017

Abstract

We prove that if G is a finite primitive permutation group and if g is an element of G, then either g has a cycle of length equal to its order, or for some r, m and k, the group G ≤ Sym(m)wrSym(r) preserves the product structure of r direct copies of the natural action of Sym(m) on k-sets. This gives an answer to a question of Siemons and Zalesski and a solution to a conjecture of Giudici, Praeger and the second author.
Articolo in rivista - Articolo scientifico
regular cycles, non-abelian simple groups, Siemons-Zalesski conjecture
English
2017
369
2
997
1024
reserved
Guest, S., Spiga, P. (2017). Finite primitive groups and regular orbits of group elements. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 369(2), 997-1024 [10.1090/tran6678].
File in questo prodotto:
File Dimensione Formato  
S0002-9947-2016-06678-7.pdf

Solo gestori archivio

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 421.49 kB
Formato Adobe PDF
421.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/133463
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
Social impact