Let G=PGL(2,q) be the projective general linear group acting on the projective line Pq A subset S of G is intersecting if for any pair of permutations π,σ in S, there is a projective point p∈Pq such that pπ=pσ. We prove that if S is intersecting, then |S|≤q(q-1). Also, we prove that the only sets S that meet this bound are the cosets of the stabilizer of a point of Pq. © 2010.

Meagher, K., Spiga, P. (2011). An Erdős-Ko-Rado theorem for the derangement graph of PGL(2,q) acting on the projective line. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 118(2), 532-544 [10.1016/j.jcta.2010.11.003].

An Erdős-Ko-Rado theorem for the derangement graph of PGL(2,q) acting on the projective line

SPIGA, PABLO
2011

Abstract

Let G=PGL(2,q) be the projective general linear group acting on the projective line Pq A subset S of G is intersecting if for any pair of permutations π,σ in S, there is a projective point p∈Pq such that pπ=pσ. We prove that if S is intersecting, then |S|≤q(q-1). Also, we prove that the only sets S that meet this bound are the cosets of the stabilizer of a point of Pq. © 2010.
Articolo in rivista - Articolo scientifico
Algebra
English
2011
118
2
532
544
reserved
Meagher, K., Spiga, P. (2011). An Erdős-Ko-Rado theorem for the derangement graph of PGL(2,q) acting on the projective line. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 118(2), 532-544 [10.1016/j.jcta.2010.11.003].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0097316510001639-main.pdf

Solo gestori archivio

Dimensione 212.74 kB
Formato Adobe PDF
212.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/133194
Citazioni
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
Social impact