A balanced graph is a bipartite graph with no induced circuit of length 2(mod4). These graphs arise in integer linear programming. We focus on graph-algebraic properties of balanced graphs to prove a complete classification of balanced Cayley graphs on abelian groups. Moreover, in this paper, we prove that there is no cubic balanced planar graph. Finally, some remarkable conjectures for balanced regular graphs are also presented. The graphs in this paper are simple. © 2009 Elsevier B.V. All rights reserved.

Morris, J., Spiga, P., Webb, K. (2010). Balanced Cayley graphs and balanced planar graphs. DISCRETE MATHEMATICS, 310(22), 3228-3235 [10.1016/j.disc.2009.11.002].

Balanced Cayley graphs and balanced planar graphs

SPIGA, PABLO
;
2010

Abstract

A balanced graph is a bipartite graph with no induced circuit of length 2(mod4). These graphs arise in integer linear programming. We focus on graph-algebraic properties of balanced graphs to prove a complete classification of balanced Cayley graphs on abelian groups. Moreover, in this paper, we prove that there is no cubic balanced planar graph. Finally, some remarkable conjectures for balanced regular graphs are also presented. The graphs in this paper are simple. © 2009 Elsevier B.V. All rights reserved.
Articolo in rivista - Articolo scientifico
Balanced graph; Cayley graph; Discrete Mathematics and Combinatorics; Theoretical Computer Science
English
2010
310
22
3228
3235
reserved
Morris, J., Spiga, P., Webb, K. (2010). Balanced Cayley graphs and balanced planar graphs. DISCRETE MATHEMATICS, 310(22), 3228-3235 [10.1016/j.disc.2009.11.002].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0012365X09005433-main.pdf

Solo gestori archivio

Descrizione: Articolo principale
Dimensione 330.53 kB
Formato Adobe PDF
330.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/133180
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact