There is great current interest in developing molecule-based electro-optic (EO) materials for opto-electronic and photonic technologies such as high-speed optical communications, integrated optics, and optical data processing and storage. Here we present the design rationale, synthesis, and molecular properties of two new organic chromophore classes enabling very large EO response along with new methodologies for self-assembling them in a non-centrosymmetric fashion. In the first class, we demonstrate that disruption of the π-conjugation via a sterically-induced molecular twisting results in unusual molecular characteristics and unprecedented hyperpolarizabilities (μβ values as high as -488,000 × 10-48 esu at 1907 nm). Guest-host poled polymers containing π-twisted chromophores exhibit very large electro-optic coefficients (r33) up to 320 pm/V at 1310 nm. Molecules of the second class enable the fabrication of acentric, high-quality, transparent, micrometer-thick films via physical vapor deposition. These systems are thermally stable and electro-optical-active films (r33 up to ∼20 pm/V) are prepared in few hours as a consequence of the pyridine-hydroxycarbonyl head-to-tail hydrogen bonding. © 2006 Old City Publishing, Inc.

Kang, H., Facchetti, A., Jiang, H., Cariati, E., Righetto, S., Ugo, R., et al. (2006). Design and realization of new generations of organic chromophores for electro-optics. NONLINEAR OPTICS, QUANTUM OPTICS, 35, 183-194.

Design and realization of new generations of organic chromophores for electro-optics

BEVERINA, LUCA;PAGANI, GIORGIO ALBERTO;
2006

Abstract

There is great current interest in developing molecule-based electro-optic (EO) materials for opto-electronic and photonic technologies such as high-speed optical communications, integrated optics, and optical data processing and storage. Here we present the design rationale, synthesis, and molecular properties of two new organic chromophore classes enabling very large EO response along with new methodologies for self-assembling them in a non-centrosymmetric fashion. In the first class, we demonstrate that disruption of the π-conjugation via a sterically-induced molecular twisting results in unusual molecular characteristics and unprecedented hyperpolarizabilities (μβ values as high as -488,000 × 10-48 esu at 1907 nm). Guest-host poled polymers containing π-twisted chromophores exhibit very large electro-optic coefficients (r33) up to 320 pm/V at 1310 nm. Molecules of the second class enable the fabrication of acentric, high-quality, transparent, micrometer-thick films via physical vapor deposition. These systems are thermally stable and electro-optical-active films (r33 up to ∼20 pm/V) are prepared in few hours as a consequence of the pyridine-hydroxycarbonyl head-to-tail hydrogen bonding. © 2006 Old City Publishing, Inc.
Articolo in rivista - Articolo scientifico
nonlinear optics
English
2006
35
183
194
none
Kang, H., Facchetti, A., Jiang, H., Cariati, E., Righetto, S., Ugo, R., et al. (2006). Design and realization of new generations of organic chromophores for electro-optics. NONLINEAR OPTICS, QUANTUM OPTICS, 35, 183-194.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/13268
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
Social impact