We carry out a systematic study of entanglement entropy in nonrelativistic conformal field theories via holographic techniques. After a discussion of recent results concerning Galilean conformal field theories, we deduce a novel expression for the entanglement entropy of (1+1)-dimensional Lifshitz field theories - this is done both at zero and finite temperature. Based on these results, we pose a conjecture for the anomaly coefficient of a Lifshitz field theory dual to new massive gravity. It is found that the Lifshitz entanglement entropy at finite temperature displays a striking similarity with that corresponding to a flat space cosmology in three dimensions. We claim that this structure is an inherent feature of the entanglement entropy for nonrelativistic conformal field theories. We finish by exploring the behavior of the mutual information for such theories.
Hosseini, S., Véliz Osorio, Á. (2016). Entanglement and mutual information in two-dimensional nonrelativistic field theories. PHYSICAL REVIEW D, 93(2) [10.1103/PhysRevD.93.026010].
Entanglement and mutual information in two-dimensional nonrelativistic field theories
HOSSEINI, SEYEDMORTEZAPrimo
;
2016
Abstract
We carry out a systematic study of entanglement entropy in nonrelativistic conformal field theories via holographic techniques. After a discussion of recent results concerning Galilean conformal field theories, we deduce a novel expression for the entanglement entropy of (1+1)-dimensional Lifshitz field theories - this is done both at zero and finite temperature. Based on these results, we pose a conjecture for the anomaly coefficient of a Lifshitz field theory dual to new massive gravity. It is found that the Lifshitz entanglement entropy at finite temperature displays a striking similarity with that corresponding to a flat space cosmology in three dimensions. We claim that this structure is an inherent feature of the entanglement entropy for nonrelativistic conformal field theories. We finish by exploring the behavior of the mutual information for such theories.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.