The Saccharomyces cerevisiae phospholipase C Plc1 is involved in cytosolic transient glucose-induced calcium increase, which also requires the Gpr1/Gpa2 receptor/G protein complex and glucose hexokinases. Differing from mammalian cells, this increase in cytosolic calcium concentration is mainly due to an influx from the external medium. No inositol triphosphate receptor homologue has been identified in the S. cerevisiae genome; and, therefore, the transduction mechanism from Plc1 activation to calcium flux generation still has to be identified. Inositol triphosphate (IP3) in yeast is rapidly transformed into IP4 and IP5 by a dual kinase, Arg82. Then another kinase, Ipk1, phosphorylates the IP5 into IP6. In mutant cells that do not express either of these kinases, the glucose-induced calcium signal was not only detectable but was even wider than in the wild-type strain. IP3 accumulation upon glucose addition was completely absent in the plc1Delta strain and was amplified both by deletion of either ARG82 or IPK1 genes and by overexpression of PLC1. These results taken together suggest that Plc1p activation by glucose, leading to cleavage of PIP2 and generation of IP3, seems to be sufficient for raising the calcium level in the cytosol. This is the first indication for a physiological role of IP3 signalling in S. cerevisiae. Many aspects about the signal transduction mechanism and the final effectors require further study.

Tisi, R., Belotti, F., Wera, S., Winderickx, J., Thevelein, J., Martegani, E. (2004). Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast. CURRENT GENETICS, 45(2), 83-89 [10.1007/s00294-003-0465-5].

Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast

TISI, RENATA ANITA;MARTEGANI, ENZO
2004

Abstract

The Saccharomyces cerevisiae phospholipase C Plc1 is involved in cytosolic transient glucose-induced calcium increase, which also requires the Gpr1/Gpa2 receptor/G protein complex and glucose hexokinases. Differing from mammalian cells, this increase in cytosolic calcium concentration is mainly due to an influx from the external medium. No inositol triphosphate receptor homologue has been identified in the S. cerevisiae genome; and, therefore, the transduction mechanism from Plc1 activation to calcium flux generation still has to be identified. Inositol triphosphate (IP3) in yeast is rapidly transformed into IP4 and IP5 by a dual kinase, Arg82. Then another kinase, Ipk1, phosphorylates the IP5 into IP6. In mutant cells that do not express either of these kinases, the glucose-induced calcium signal was not only detectable but was even wider than in the wild-type strain. IP3 accumulation upon glucose addition was completely absent in the plc1Delta strain and was amplified both by deletion of either ARG82 or IPK1 genes and by overexpression of PLC1. These results taken together suggest that Plc1p activation by glucose, leading to cleavage of PIP2 and generation of IP3, seems to be sufficient for raising the calcium level in the cytosol. This is the first indication for a physiological role of IP3 signalling in S. cerevisiae. Many aspects about the signal transduction mechanism and the final effectors require further study.
Articolo in rivista - Articolo scientifico
calcium; inositol triphosphate; glucose signalling
English
feb-2004
45
2
83
89
none
Tisi, R., Belotti, F., Wera, S., Winderickx, J., Thevelein, J., Martegani, E. (2004). Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast. CURRENT GENETICS, 45(2), 83-89 [10.1007/s00294-003-0465-5].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/12957
Citazioni
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 39
Social impact