Fuzzy sets are an extension of classical sets, used to mathematically model indefinite concepts, such as that of customer satisfaction. This is obtained by introducing a membership function expressing the degree of membership of the elements to a set. Intuitionistic fuzzy sets represent an extension of the theory of fuzzy sets, in which also a suitable non-membership function is defined. In this paper we aim at quantifying a latent construct, namely satisfaction, using fuzzy sets and intuitionistic fuzzy sets. We put forth a general evaluation method: first, we introduce a fuzzy satisfaction index to obtain membership values. Second, inferential confidence intervals (ICI), calculated through Bootstrap-t and percentile procedures, are used to assess the uncertainty underpinning membership and non-membership estimates. Third, we address the problem of optimal and multiple ICI, as well as their generalization through p values and q-values. In particular, we consider the problem of analyzing the responses to evaluation questionnaires. We apply this new method to a national program of evaluation of University courses and we discuss our framework in comparison with other evaluation techniques.
Marasini, D., Quatto, P., Ripamonti, E. (2017). Inferential confidence intervals for fuzzy analysis of teaching satisfaction. QUALITY & QUANTITY, 51(4), 1513-1529 [10.1007/s11135-016-0349-7].
Inferential confidence intervals for fuzzy analysis of teaching satisfaction
MARASINI, DONATAPrimo
;QUATTO, PIEROSecondo
;RIPAMONTI, ENRICO
2017
Abstract
Fuzzy sets are an extension of classical sets, used to mathematically model indefinite concepts, such as that of customer satisfaction. This is obtained by introducing a membership function expressing the degree of membership of the elements to a set. Intuitionistic fuzzy sets represent an extension of the theory of fuzzy sets, in which also a suitable non-membership function is defined. In this paper we aim at quantifying a latent construct, namely satisfaction, using fuzzy sets and intuitionistic fuzzy sets. We put forth a general evaluation method: first, we introduce a fuzzy satisfaction index to obtain membership values. Second, inferential confidence intervals (ICI), calculated through Bootstrap-t and percentile procedures, are used to assess the uncertainty underpinning membership and non-membership estimates. Third, we address the problem of optimal and multiple ICI, as well as their generalization through p values and q-values. In particular, we consider the problem of analyzing the responses to evaluation questionnaires. We apply this new method to a national program of evaluation of University courses and we discuss our framework in comparison with other evaluation techniques.File | Dimensione | Formato | |
---|---|---|---|
InferentialConfidenceIntervals.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
467.83 kB
Formato
Adobe PDF
|
467.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.