The experimentally induced neurotoxic effects of paclitaxel and docetaxel have never been compared, since no animal models of docetaxel peripheral neurotoxicity have yet been reported. In this experiment, we examined the effect of the chronic administration of these two taxanes in the Wistar rat using neurophysiological, neuropathological and morphometrical methods. Our results showed that both paclitaxel and docetaxel induced a significant, equally severe and dose-dependent reduction in nerve conduction velocity. On the contrary, the morphometric examination demonstrated that the effect on the nerve fibres was more severe after paclitaxel administration when the same schedule was used. However, the overall severity of the pathological changes was milder than expected on the basis of the neurophysiological results. Our results support the hypothesis that taxanes (and particularly docetaxel) may exert their neurotoxic effect not only on the microtubular system of the peripheral nerves, but also on other less obvious targets. © 2005 Elsevier Ltd. All rights reserved.
Persohn, E., Canta, A., Schoepfer, S., Traebert, M., Mueller, L., Gilardini, A., et al. (2005). Morphological and morphometric analysis of paclitaxel and docetaxel-induced peripheral neuropathy in rats. EUROPEAN JOURNAL OF CANCER, 41(10), 1460-1466 [10.1016/j.ejca.2005.04.006].
Morphological and morphometric analysis of paclitaxel and docetaxel-induced peripheral neuropathy in rats
CANTA, ANNALISA ROSANNA;GILARDINI, ALESSANDRA;NICOLINI, GABRIELLA;SCUTERI, ARIANNA;LANZANI, FRANCESCA;GIUSSANI, GIUDITTA;CAVALETTI, GUIDO ANGELO
2005
Abstract
The experimentally induced neurotoxic effects of paclitaxel and docetaxel have never been compared, since no animal models of docetaxel peripheral neurotoxicity have yet been reported. In this experiment, we examined the effect of the chronic administration of these two taxanes in the Wistar rat using neurophysiological, neuropathological and morphometrical methods. Our results showed that both paclitaxel and docetaxel induced a significant, equally severe and dose-dependent reduction in nerve conduction velocity. On the contrary, the morphometric examination demonstrated that the effect on the nerve fibres was more severe after paclitaxel administration when the same schedule was used. However, the overall severity of the pathological changes was milder than expected on the basis of the neurophysiological results. Our results support the hypothesis that taxanes (and particularly docetaxel) may exert their neurotoxic effect not only on the microtubular system of the peripheral nerves, but also on other less obvious targets. © 2005 Elsevier Ltd. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.