We study the spectrum of a biharmonic Steklov eigenvalue problem in a bounded domain of Rn. We characterize it in general and give its explicit form in the case where the domain is a ball. Then, we focus our attention on the first eigenvalue of this problem. We prove some estimates and study its isoperimetric properties. By recalling a number of known results, we finally highlight the main open problems still to be solved

Ferrero, A., Gazzola, F., Weth, T. (2005). On a fourth order Steklov eigenvalue problem. ANALYSIS, 25(38443), 315-332 [10.1524/anly.2005.25.4.315].

On a fourth order Steklov eigenvalue problem

FERRERO, ALBERTO;
2005

Abstract

We study the spectrum of a biharmonic Steklov eigenvalue problem in a bounded domain of Rn. We characterize it in general and give its explicit form in the case where the domain is a ball. Then, we focus our attention on the first eigenvalue of this problem. We prove some estimates and study its isoperimetric properties. By recalling a number of known results, we finally highlight the main open problems still to be solved
Articolo in rivista - Articolo scientifico
Steklov eigenvalue problem
English
2005
25
38443
315
332
none
Ferrero, A., Gazzola, F., Weth, T. (2005). On a fourth order Steklov eigenvalue problem. ANALYSIS, 25(38443), 315-332 [10.1524/anly.2005.25.4.315].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/11549
Citazioni
  • Scopus 42
  • ???jsp.display-item.citation.isi??? ND
Social impact