We consider an SO(4) Euler rigid body with two 'inertia momenta' coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.

Falqui, G. (2007). A note on the rotationally symmetric ${\rm SO}(4)$ Euler rigid body. SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS, 3, 032 [10.3842/SIGMA.2007.032].

A note on the rotationally symmetric ${\rm SO}(4)$ Euler rigid body

FALQUI, GREGORIO
2007

Abstract

We consider an SO(4) Euler rigid body with two 'inertia momenta' coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.
Articolo in rivista - Articolo scientifico
Separation of variables, Symmetric Manakov Top
English
2007
3
032
032
none
Falqui, G. (2007). A note on the rotationally symmetric ${\rm SO}(4)$ Euler rigid body. SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS, 3, 032 [10.3842/SIGMA.2007.032].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/11515
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
Social impact