Given that the pharmacological or genetic inactivation of fatty acid amide hydrolase (FAAH) counteracts pain and inflammation, and on the basis of the established involvement of transient receptor potential vanilloid type-1 (TRPV1) channels in inflammatory pain, we tested the capability of a dual FAAH/TRPV1 blocker, N-arachidonoyl-serotonin (AA-5-HT), to relieve oedema and pain in a model of acute inflammation, and compared its efficacy with that of a single FAAH inhibitor (URB597) or TRPV1 antagonist (capsazepine). Acute inflammation was induced by intraplantar injection of λ-carrageenan into mice and the anti-inflammatory and anti-nociceptive actions of AA-5-HT were assessed at different doses, time points and treatment schedule. In addition, endocannabinoid levels were measured in paw skin and spinal cord. Systemic administration of AA-5-HT elicited dose-dependent anti-oedemigen and anti-nociceptive effects, whereas it was devoid of efficacy when given locally. When tested in a therapeutic regimen, the compound retained comparable anti-inflammatory effects. TRPV1 receptor mediated the anti-inflammatory property of AA-5-HT, whereas both CB1 and TRPV1 receptors were involved in its anti-hyperalgesic activity. These effects were accompanied by an increase of the levels of the endocannabinoid anandamide (AEA) in both inflamed paw and spinal cord. AA-5-HT was more potent than capsazepine as anti-oedemigen and anti-hyperalgesic drug, whereas it shows an anti-oedemigen property similar to URB597, which was, however, devoid of the anti-nociceptive effect. AA-5-HT did not induce unwanted effects on locomotion and body temperature. In conclusion AA-5-HT has both anti-inflammatory and anti-hyperalgesic properties and its employment offers advantages, in terms of efficacy and lack of adverse effects, deriving from its dual activity. © 2010 Elsevier Ltd.
Costa, B., Bettoni, I., Petrosino, S., Comelli, F., Giagnoni, G., Di Marzo, V. (2010). The dual fatty acid amide hydrolase/TRPV1 blocker, N-arachidonoyl-serotonin, relieves carrageenan-induced inflammation and hyperalgesia in mice. PHARMACOLOGICAL RESEARCH, 61(6), 537-546 [10.1016/j.phrs.2010.02.001].
The dual fatty acid amide hydrolase/TRPV1 blocker, N-arachidonoyl-serotonin, relieves carrageenan-induced inflammation and hyperalgesia in mice
COSTA, BARBARA SIMONA
;COMELLI, FRANCESCA;GIAGNONI, GABRIELLA;
2010
Abstract
Given that the pharmacological or genetic inactivation of fatty acid amide hydrolase (FAAH) counteracts pain and inflammation, and on the basis of the established involvement of transient receptor potential vanilloid type-1 (TRPV1) channels in inflammatory pain, we tested the capability of a dual FAAH/TRPV1 blocker, N-arachidonoyl-serotonin (AA-5-HT), to relieve oedema and pain in a model of acute inflammation, and compared its efficacy with that of a single FAAH inhibitor (URB597) or TRPV1 antagonist (capsazepine). Acute inflammation was induced by intraplantar injection of λ-carrageenan into mice and the anti-inflammatory and anti-nociceptive actions of AA-5-HT were assessed at different doses, time points and treatment schedule. In addition, endocannabinoid levels were measured in paw skin and spinal cord. Systemic administration of AA-5-HT elicited dose-dependent anti-oedemigen and anti-nociceptive effects, whereas it was devoid of efficacy when given locally. When tested in a therapeutic regimen, the compound retained comparable anti-inflammatory effects. TRPV1 receptor mediated the anti-inflammatory property of AA-5-HT, whereas both CB1 and TRPV1 receptors were involved in its anti-hyperalgesic activity. These effects were accompanied by an increase of the levels of the endocannabinoid anandamide (AEA) in both inflamed paw and spinal cord. AA-5-HT was more potent than capsazepine as anti-oedemigen and anti-hyperalgesic drug, whereas it shows an anti-oedemigen property similar to URB597, which was, however, devoid of the anti-nociceptive effect. AA-5-HT did not induce unwanted effects on locomotion and body temperature. In conclusion AA-5-HT has both anti-inflammatory and anti-hyperalgesic properties and its employment offers advantages, in terms of efficacy and lack of adverse effects, deriving from its dual activity. © 2010 Elsevier Ltd.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.