The determination of the neutrino mass is an open issue in modern particle physics and astrophysics. The direct mass measurement is the only theory-unrelated experimental tool capable to probe such quantity. The HOLMES experiment will measure the end-point energy of the electron capture decay of 163Ho, aiming at a statistical sensitivity on the neutrino mass around 1 eV/c2. In order to acquire the large needed statistics by keeping the pile-up contribution as low as possible, 1000 transition edge sensors will be readout simultaneously with the frequency domain readout, a multiplexing technique where the multiplex factor is only limited by the bandwidth of the available commercial fast digitizers. We outline here the HOLMES project with its technical challenges, and its status and perspectives.

Faverzani, M., Alpert, B., Backer, D., Bennet, D., Biasotti, M., Brofferio, C., et al. (2016). The HOLMES Experiment. JOURNAL OF LOW TEMPERATURE PHYSICS, 184(3-4), 922-929 [10.1007/s10909-016-1540-x].

The HOLMES Experiment

FAVERZANI, MARCO
Primo
;
BROFFERIO, CHIARA;DAY, PETER KENNETH;FERRI, ELENA;GIACHERO, ANDREA;MAINO, MATTEO;NUCCIOTTI, ANGELO ENRICO LODOVICO
;
PESSINA, GIANLUIGI EZIO;PUIU, PAUL ANDREI;RAGAZZI, STEFANO;SISTI, MONICA;TERRANOVA, FRANCESCO;
2016

Abstract

The determination of the neutrino mass is an open issue in modern particle physics and astrophysics. The direct mass measurement is the only theory-unrelated experimental tool capable to probe such quantity. The HOLMES experiment will measure the end-point energy of the electron capture decay of 163Ho, aiming at a statistical sensitivity on the neutrino mass around 1 eV/c2. In order to acquire the large needed statistics by keeping the pile-up contribution as low as possible, 1000 transition edge sensors will be readout simultaneously with the frequency domain readout, a multiplexing technique where the multiplex factor is only limited by the bandwidth of the available commercial fast digitizers. We outline here the HOLMES project with its technical challenges, and its status and perspectives.
Articolo in rivista - Articolo scientifico
Electron capture; Holmium; Neutrino mass measurement; Transition edge sensors;
Neutrino mass measurement, Electron capture, Holmium, Transition Edge Sensors
English
2016
184
3-4
922
929
none
Faverzani, M., Alpert, B., Backer, D., Bennet, D., Biasotti, M., Brofferio, C., et al. (2016). The HOLMES Experiment. JOURNAL OF LOW TEMPERATURE PHYSICS, 184(3-4), 922-929 [10.1007/s10909-016-1540-x].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/105673
Citazioni
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 36
Social impact