We investigate various features of a quite new family of graphs, introduced as a possible example of vertex-transitive graph not roughly isometric with a Cayley graph of some finitely generated group. We exhibit a natural compactification and study a large class of random walks, proving theorems concerning almost sure convergence to the boundary, a strong law of large numbers and a central limit theorem. The asymptotic type of the n-step transition probabilities of the simple random walk is determined.

Bertacchi, D. (2001). Random walks on Diestel-Leader graphs. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 71, 205-224 [10.1007/BF02941472].

Random walks on Diestel-Leader graphs

Bertacchi, D
2001

Abstract

We investigate various features of a quite new family of graphs, introduced as a possible example of vertex-transitive graph not roughly isometric with a Cayley graph of some finitely generated group. We exhibit a natural compactification and study a large class of random walks, proving theorems concerning almost sure convergence to the boundary, a strong law of large numbers and a central limit theorem. The asymptotic type of the n-step transition probabilities of the simple random walk is determined.
Articolo in rivista - Articolo scientifico
tree; horocyclic function; DL-graph; transition probabilities
English
dic-2001
71
205
224
partially_open
Bertacchi, D. (2001). Random walks on Diestel-Leader graphs. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 71, 205-224 [10.1007/BF02941472].
File in questo prodotto:
File Dimensione Formato  
Bertacchi-2001-AMSUH-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 210.22 kB
Formato Adobe PDF
210.22 kB Adobe PDF Visualizza/Apri
Bertacchi-2001-AMSUH-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 824.55 kB
Formato Adobe PDF
824.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/1042
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
Social impact