We report high-pressure Raman and Brillouin spectroscopy results measured in the (010) plane of a natural antigorite single crystal. We find that structural changes at >6 GPa lead to (1) an intensity crossover between Raman modes of the Si-O-Si bending vibrations, (2) changes of the compression behavior of Raman modes related to the SiO4 tetrahedra, (3) changes of the pressure derivative of the Raman shifts associated with OH stretching vibrations, (4) the emergence of a new Raman band in the OH spectral region, (5) a softening of the elastic constants c33 and c11, and (6) a directional change of the slowest compressional wave velocity in the a-c plane. In addition to the structural insights at high-pressure, the unique characteristics of our single-crystal sample allows for first direct measurements of the acoustic velocity anisotropy in a plane perpendicular to the basal a-b plane. Comparison to previously published data indicates that the elastic anisotropy of antigorite strongly depends on the FeO and/or Al2O3 content. In contrast, it seems not to be affected by increasing temperature as inferred from an additional high-temperature experiment performed in our study. These constraints are important for the interpretation of seismic anisotropy observations in subduction zone environments.

Marquardt, H., Speziale, S., Koch Müller, M., Marquardt, K., Capitani, G. (2015). Structural insights and elasticity of single-crystal antigorite from high-pressure Raman and Brillouin spectroscopy measured in the (010) plane. AMERICAN MINERALOGIST, 100(8-9), 1932-1939 [10.2138/am-2015-5198].

Structural insights and elasticity of single-crystal antigorite from high-pressure Raman and Brillouin spectroscopy measured in the (010) plane

CAPITANI, GIANCARLO
2015

Abstract

We report high-pressure Raman and Brillouin spectroscopy results measured in the (010) plane of a natural antigorite single crystal. We find that structural changes at >6 GPa lead to (1) an intensity crossover between Raman modes of the Si-O-Si bending vibrations, (2) changes of the compression behavior of Raman modes related to the SiO4 tetrahedra, (3) changes of the pressure derivative of the Raman shifts associated with OH stretching vibrations, (4) the emergence of a new Raman band in the OH spectral region, (5) a softening of the elastic constants c33 and c11, and (6) a directional change of the slowest compressional wave velocity in the a-c plane. In addition to the structural insights at high-pressure, the unique characteristics of our single-crystal sample allows for first direct measurements of the acoustic velocity anisotropy in a plane perpendicular to the basal a-b plane. Comparison to previously published data indicates that the elastic anisotropy of antigorite strongly depends on the FeO and/or Al2O3 content. In contrast, it seems not to be affected by increasing temperature as inferred from an additional high-temperature experiment performed in our study. These constraints are important for the interpretation of seismic anisotropy observations in subduction zone environments.
Articolo in rivista - Articolo scientifico
Antigorite; Brillouin; Elasticity; Raman; Seismic anisotropy; Serpentine
English
2015
100
8-9
1932
1939
none
Marquardt, H., Speziale, S., Koch Müller, M., Marquardt, K., Capitani, G. (2015). Structural insights and elasticity of single-crystal antigorite from high-pressure Raman and Brillouin spectroscopy measured in the (010) plane. AMERICAN MINERALOGIST, 100(8-9), 1932-1939 [10.2138/am-2015-5198].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/102513
Citazioni
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
Social impact