We extend to the case of many competing densities the results of the paper (Ann. Inst. H. Poincare 6 (2002)). More precisely, we are concerned with an optimal partition problem in N-dimensional domains related to the method of nonlinear eigenvalues introduced by Nehari, (Acta Math. 105 (1961)). We prove existence of the minimal partition and some extremality conditions. Moreover, in the case of two-dimensional domains we give an asymptotic formula near the multiple intersection points. Finally, we show some connections between the variational problem and the behavior of competing species systems with large interaction. (C) 2002 Elsevier Science (USA)

Conti, M., Terracini, S., Verzini, G. (2003). An optimal partition problem related to nonlinear eigenvalues. JOURNAL OF FUNCTIONAL ANALYSIS, 198(1), 160-196 [10.1016/S0022-1236(02)00105-2].

An optimal partition problem related to nonlinear eigenvalues

TERRACINI, SUSANNA;
2003

Abstract

We extend to the case of many competing densities the results of the paper (Ann. Inst. H. Poincare 6 (2002)). More precisely, we are concerned with an optimal partition problem in N-dimensional domains related to the method of nonlinear eigenvalues introduced by Nehari, (Acta Math. 105 (1961)). We prove existence of the minimal partition and some extremality conditions. Moreover, in the case of two-dimensional domains we give an asymptotic formula near the multiple intersection points. Finally, we show some connections between the variational problem and the behavior of competing species systems with large interaction. (C) 2002 Elsevier Science (USA)
Articolo in rivista - Articolo scientifico
Optimal partitions, regularity of the interface
English
2003
198
1
160
196
none
Conti, M., Terracini, S., Verzini, G. (2003). An optimal partition problem related to nonlinear eigenvalues. JOURNAL OF FUNCTIONAL ANALYSIS, 198(1), 160-196 [10.1016/S0022-1236(02)00105-2].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/10094
Citazioni
  • Scopus 96
  • ???jsp.display-item.citation.isi??? 94
Social impact