An old conjecture of Marušič, Jordan and Klin asserts that any finite vertex-transitive graph has a non-trivial semiregular automorphism. Marušič and Scapellato proved this for cubic graphs. For these graphs, we make a stronger conjecture, to the effect that there is a semiregular automorphism of order tending to infinity with n. We prove that there is one of order greater than 2. © 2005 Elsevier Ltd. All rights reserved

Cameron, P., Sheehan, J., Spiga, P. (2006). Semiregular automorphisms of vertex-transitive cubic graphs. EUROPEAN JOURNAL OF COMBINATORICS, 27(6), 924-930 [10.1016/j.ejc.2005.04.008].

Semiregular automorphisms of vertex-transitive cubic graphs

SPIGA, PABLO
Ultimo
2006

Abstract

An old conjecture of Marušič, Jordan and Klin asserts that any finite vertex-transitive graph has a non-trivial semiregular automorphism. Marušič and Scapellato proved this for cubic graphs. For these graphs, we make a stronger conjecture, to the effect that there is a semiregular automorphism of order tending to infinity with n. We prove that there is one of order greater than 2. © 2005 Elsevier Ltd. All rights reserved
Articolo in rivista - Articolo scientifico
Discrete Mathematics and Combinatorics; Theoretical Computer Science
English
2006
27
6
924
930
none
Cameron, P., Sheehan, J., Spiga, P. (2006). Semiregular automorphisms of vertex-transitive cubic graphs. EUROPEAN JOURNAL OF COMBINATORICS, 27(6), 924-930 [10.1016/j.ejc.2005.04.008].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/100717
Citazioni
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
Social impact